A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25(-) cluster.
نویسندگان
چکیده
Photoelectron spectroscopy and ab initio calculations are used to investigate the structures and chemical bonding of the B25(-) cluster. Global minimum searches reveal a dense potential energy landscape with 13 quasi-planar structures within 10 kcal/mol at the CCSD(T)/6-311+G(d) level of theory. Three quasi-planar isomers (I, II, and III) are lowest in energy and nearly degenerate at the CCSD(T) level of theory, with II and III being 0.8 and 0.9 kcal/mol higher, respectively, whereas at two density functional levels of theory isomer III is the lowest in energy (8.4 kcal/mol more stable than I at PBE0/6-311+G(2df) level). Comparison with experimental photoelectron spectroscopic data shows isomer II to be the major contributor while isomers I and III cannot be ruled out as minor contributors to the observed spectrum. Theoretical analyses reveal similar chemical bonding in I and II, both involving peripheral 2c-2e B-B σ-bonding and delocalized interior σ- and π-bonding. Isomer III has an interesting elongated ribbon-like structure with a π-bonding pattern analogous to those of dibenzopentalene. The high density of low-lying isomers indicates the complexity of the medium-sized boron clusters; the method dependency of predicting relative energies of the low-lying structures for B25(-) suggests the importance of comparison with experiment in determining the global minima of boron clusters at this size range. The appearance of many low-lying quasi-planar structures containing a hexagonal hole in B25(-) suggests the importance of this structural feature in maintaining planarity of larger boron clusters.
منابع مشابه
A photoelectron spectroscopy and ab initio study of the structuresand chemical bonding of the B25â‹TM cluster
متن کامل
A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster.
The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24(-) possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moie...
متن کاملAB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule
BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...
متن کاملChemical bonding in Si5(2-) and NaSi5(-) via photoelectron spectroscopy and ab initio calculations.
Photoelectron spectroscopy and ab initio calculations are used to investigate the electronic structure and chemical bonding of Si5(-) and Si5(2-) in NaSi5(-). Photoelectron spectra of Si5(-) and NaSi5(-) are obtained at several photon energies and are compared with theoretical calculations at four different levels of theory, TD-B3LYP, R(U)OVGF, UCCSD(T), and EOM-CCSD(T), all with 6-311+G(2df) b...
متن کاملInvestigation of Water Cluster ((H2O)n , n = 2-6) in Aspect of Structures, Energies and Thermodynamic Properties by Ab Initio methods
The intermolecular forces between water molecules are of great importance in many areas of chemistry including solvation, solution chemistry, and biochemistry. As a result of this (H2O)n systems have received a great significant of attention, both experimental and theoretical. All calculation of this study are carried out by Gaussian 98 soft ware. Geometry optimization for each cluster were be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 141 3 شماره
صفحات -
تاریخ انتشار 2014